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9.) Evaluation of inertia terms.

It was found that the calculated Reynolds number for
separation is 16 times to small compared with the experi-
mental evidence. This discrepancy was attributed to the
linearization of the inertia terms in Navier-Stokes equations

Therefore an estimation of the inertia terms is of interest.

In (24) the first term represents the linearized inertia
forces, the second and third one on the left side the second
order inertia forces. For an estimation the surface integral
of (24) over the cross section of the gap will be considered

JU aydF +J(V; &e- y,a%4 )dF - v fh y a'dF

Regarding (33) one sees that the integrals of the first order

inertia term and or the viscosity term are zero. The surface
integral of the second order inertia forces will be transfor-
med by Greens theorem into a boundary integral:

Only the outer boundary with radius rI contributes as at the
inner boundary 1v' 0, y", 0 . Introducing (33) and the direc-
tion of n equal to that of r one obtains when regarding the

boundary condition3 (*,47)

• (Y; Jak,, Y -LY; Y,•. dp Y. ex,, US -r:. ''
a Pt



The following valuas were computed for the two numerical

examples

K - 3 lo g"- 196,6o595 U

K - 10 , if - 1972,6o36 U

Introducing the experimental values rI - 25 mm, r0 - 21 mm,

e - 1 mm one obtains for K - 3 • 10° as integral value
A2

- 35 U2. The second order inertia terms show to be ne-

gative so that the linearized inertia term seems to be too

large. If this is so a too small Reynolds number is calcu-

lated. This can be shown by introducing the dimensionless

radius I and the corresponding stream function * Then

from (22)

45 A , - TY711u f

is obtained. An average value of the Reynolds number

Rei

is given by

- e I ý" -dFAM

It is indeed too small if the average value of the 4imen-

sionless inertia forces is too large.

An other procedure for the control of inertia forces is

to introduce in advance smaller inertia forces than in the

preceeding s1!colation. This is done by dividing the gap in

two annuli. In the inner one inertia forces are neglected

as they are anyhow zero at the inner boundary. In the outer

annulus the linearized inertia forces are considered. The

width of the two arnnuf was assumed as equal. The radius of

the interface will be denoted with r' and the corresponding

variable y with y'.



The solution for the inner annullus was already

presented in chapter (5). It will now be written

•V; a ,[c, * .# a Y cr' • c ".'r Inr cos W

S. e +bv •b"r •. b'r -. br-inr,] sin (P (54

Index i refers to the inner annulus, index a to the outer

annulus. With r is denoted the dimensionless radius r/ro.

The boundary conditions are

at r'= 1, Yv, 0 , Y 0 (55

at r r', y-y', y ,' m• I V y,,V . (56

For the outer annulus one has the solution (33) and the

condition (46) for the outer boundary.

Furthermore there must exist a steady connection of

the velocities on both sides of the interface, This gives

the additional boundary conditions at r - r', y - y' resp.

r - r',9 y - y'; ,, , . •W (57

Each boundary condition gives two equations one for the

sine and one for the cosine term of (54). Therefore the

boundary conditions lead to 16 equations by which the 8

constants ci, c 2 , c., c•, bi, b2 , b3 , b4 l, of (54) and the

8 constants a0 , a,, a2, a, mi0 , mI, mi2 , m3 of (p):) should

be determined. However two of these equations show to be

linearily dependent. These equations dre YVM - ¥v'i at

r - r, y - yI resp. They are linear combinations of (57).

As the purpose of this calculation is merely to analyse

the influence of too large inertia terms on the Reynolds

number for separation a further boundary condition may be



ihtroduced which also reduces the inertia forces. This

is the condition that at the interface the second radial

derivatives of the tangential velocity components on each

side of the interface coincide. This gives two more equations,

one for the sine and one for the cosine terms.

*V- - , (58

With this additional condition which has no physical

meaning the linear dependency is removed. It was already

pointed out that a lack of physical meaning is here of no

importance as in this calculation only the effect of smaller

inertia terms than in the previous calculation should be

investigated.

Introducing (54) and (33) into the conditions (55, 56,

57, 58, 47) one obtains the following boundary conditions

4.) r a 4

Cl- C2, + 3C 3 *CO 0; b, - b 3b, +b,, -O
5-j

C',CL C, .0; b4 + .

2.) V'. ' , y- y'

c,- c +'' . 3cjr * c.(LInr' .1)

,,- b ' o. 3br", * () Yg'(y')

C' , eY,& + ClY' 4 C In r' -

b. b, 4. bv 4. b. In A (6-

2ca'3 *+ be' +* (y')

2 4 3,r'- 6 b,v r b,' -go(y')

S6 cr" + 6€c - c'- f (y')

-6 bLY0. * # 6b, " b 'b4  9 g ('

39.) y€ * 4
see (4 7 )



The condition for separation

-0(U* U) - 0

at r - 1 leads with (51a, 54) to the expression

2j7j~i) u" - e{12c, * 6c, . c, Ios ( 2 [Zb, + 6b *b,,.nj. 0 (61

Numerical calculations were carried through for

K- 3 . 103 6A o,2, y' o,1, r= ,

With these quantities the 16 constants were evaluated Irom

(59, 6o, 47). The following results were obtained.

ao - o,ý37o9 V ; cI = - ,21248 y ;

al - - 2,43o07 V ; C2 M 2o,2o62o V ;

a 2 - 4 1,8 6 o.I V ; c3 M -14,OJ372 V ;

a3 - - 2oI,647.9 V ; c 4 - 7o,39985 V ;

Mo - - 0,52414 V ; b1,= .- 5,1o:7 V

mI M 0,62465 V ; b 2 = - 8,o8644 V

m2 = - 1,21o61V ; b 3 - 1.,14616 V;

m 3 - 118,3j1o2 V ; b - 42,4651O V

/



Now from (61) the excentricity • with which separa-

tion occurs can be determined. Introducing the two angles

- 00, 9o0 one obtains

¥t -00: 5,45455 - I o 2o,84991 -o

f - o,26161, e - 5,45o21 -

P g9oo : 5,45455 - f 20,23889- 0

£ -L o,26951, • - 5.61477 mm

In the preceeding calculation with linearized inertiamm
terms covering the whole gap it was found e - I for the

same values of 1. and K - 3 * lo3 or Re - 1,3 * o3 reap.

The experiments had shown that the Reynolds number for

separation was calculated 16 times too small. Now with

reduced inertia terms that means with the assumption that

only in the outer half of the gap inertia forces are ac-

ting e - 5,61477 mm is found, which result indeed corres-

ponds more closely to the experiments. A direct compari-

son is not possible as experiments were performed only

with a maximum excentricity e - 3,5 mw corresponding to

i - o,167. For separation the experiments gave Re -

2,1 • lo4 or K - 4,8 lo4 reasp. This quantity relating

to 0 - 3,5 mm must indeed be larger tbqn for e - 5,6 -m.

This is in agreement with the calculation which gave

• - 5,6 mm for K - 3 " 10- or Re - 1,3 • Id reap. One

sees that the order of magnitude of experimental and cal-

oulated Reynolds numbers now agrees.



Table II

Estimation of inertia terms.

First calculation

K - 3.l03; - 1,.103. e - 1,o13.92 mm; L.- o,o48668

Second calculation

K - 3.1o3; Re - 10 lo3 e - 5,45o21 mm; L- o,26161

Experiment

4 4
K - 5.1o4; Re - 2,1.lo ; e - 1 m,; 1- 0,048

This shows clearly that the linearization causes the

discrepancy of calculated and measured Reynolds numbers

for separation. By omitting partLy the inertia terms in

the second calculation indeed a satisfactory agreement

with experiments is obtained.



10.) Stability proof of Couette flow with regard to per-

turbation waves.

In the preceeding theoretical investigation it was

found that separation of the Couette flow may occur

when the flow is bounded by excentric cylinders the

outer rotating the inner at rest. The close agreement

of the calculated Reynolds number for separation and

the experimentally determined Reynolds number for the

first occurance of perturbations confirms that with ex-

centric cylinders the generation of tu-bulence is a se-

paration effect. It may be stated that the same effect mey

be due to vibrations, as separation is affected by iner-

tia forces independently of the means by which they are

created i.e. by stationary or nonstationary motion. Those

circumstances may explain the generation of turbulence

in earlier experiments [1,2,3,4]. In fact the review of

the earlier experimental work does not exclude the con-

jecture that excentricities and vibrations could have

been present. This could mean that in the absence of

excentricities and vibrations a Couette flow with ro-

tating outer cylinder and the inner cylinder at rest

should be stable. But this conclusion would not be com-

plete if there could not be given a direct proof of the

stability of such a "pure" Couette flow. By eliminating

excentricities and vibrations as far as possible sta-

bility was found to the highest speeds of revolutions

experimentally obtainable [51. The theoretical treat-

ment applying the method of small perturbation waves

on the complete Navier Stokes aquations leads to Bessel

functions o; complex order as eigenfunctions [(5. As

the zeros of these functions are not known the eigen-

values cannot be determined in this way. Therefore the

solution was derived as a series expansion. This expan-

sion contains few numerical errors which fortunately

showed to be of subordinate influence on the numerical
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results. In eq.2o of (51 the coefficients- 16.67;
33-33 have to be replaced by 5.56; 22.22 and in eq. 21
of [(5 the £2 terms are positive. The corrected equa-
tions will be given with the following Qotations. The

fraction of the width d of the gap and the radius r

of the outer cylinder iA denoted by 6,

d
8 r

the wave length of the perturbation by• and the number
of waves along the circumference by k

k 27rkc = -r,

the ratio of the propagation velocity c of the pertur-
bation and the velocity V of the outer cylinder by ,

+ -

where are the real and imaginary part of

the Reynolds number by R

Vr

Finally the abbreviations

q k R 62 '

r - k R (1

s ink Rtroduced

are introduced.



With this the real and the imagninary part of the se-

ries expansion are

33,3 (I+S) + [8o,3 + 11," k2 + 5,5 q . 62  (54

+ [77o7 + 22,• k 2 + 5,5 q163

+ f- 19,791-6 - 43,o- k 2 - 2,o8-3 q - o,699 (k4 + k2 q)

- o,34712 (q2 - p 2 ) ] 64

+ - 2,43o0 - 4,16 Ik2 + 2,7 q + 3,4719 k<4

+ 2,o83 k 2 q + o,1157r" q 2 _ o,57873 p 2 . o,4•• ps 685 0

and

5,5 + 222' 6 - (25,4M" + 2,37T k 2 ) 62

+ (11,34-2-5-9 + 6,71-'35 k 2 )6 3

- (1, B'51 + 3,oo0 0 2"5 2)6 4  (55

+ 11- ,t' - 5,'5 6 + (9,#7 + 1,3•' k 2 )6 2

- (7,63• + 4,86"TTo k 2)63 + (2,7 + 2,o8_3 k2)641

- q62 [ 1,U5_1 - 2,o893 6 + o,69W 6 2

+ ý, (- 1,3 + 1, 157T 6 - o,2317E 62)2.

There exists stability when t; 0 0, q<O rasp. For diffe-

rent width of the gap and different wave numbers k the

following stability regions fore, were calculated. It

has to be mentioned that k. >1 has no physical sense.



Table III

Regions of in which ý4 0

o,ol 1 0,51722 1,28571
loo 0,51586

1000 o,5o9339
loooo o, 3.239

100000 0

0,01 1 o,64988 1,29412
loo 0,55012

1000 0looao 010000 0"

o,2 1 0,76593 1,25391
loo o,47515 "

1000 0
10000 0 "

0,4 1 o,9o171 1,11'31o
loo 0,58857

looo 0
10000 0

0,6 1 0,97159 1,o9525
loo 0,85994

1ooo o, 81647 i

10000 o,81o26
oo 0,8o954 i

o,8 1 o,99654 1, oa3o
loo 0,97705

10ooo o,97399
10000 o,97363

0o 0,97359 i

0,9 1 o, 99957 Ioo866
loo o,99362

10oo 0,99295
loooo 0,99288

coo ,99287

One sees that the larger the width or the gap the smaller

the stability region of gr which in the limiting case

S -1 seems to converge to -r 1 1. It will be shown later

that this is in agreement with the exact solution, which



will be derived for 1 - 1. It will be shown that

is the oniy possible propagation velocity. Therefore a

larger or smaller region of Ir does not indicate the re-

liability of this calculation.

11.) Stability of a fluid rotating as rigid body

As the series expansion does not give a complete stabi-

lity proof it is of interest to search for special cases in

which an exact solution of the stability problem is possible.

Is will be shown this is true in the limiting case of a

centric inner cylinder with zero radius. Here the fluid

is rotating as rigid body.

Denoting the radius of the outer cylindur by r , the

rotatory speed of this cylinder by V, the velocity of the

liquid by U and introducing the radial coordinate y with

the origin at the outer cylinder one has

U = Y (r-y) (56r

If 7 denotes the circumferential angle the circumferential

coordinate

x - ry (57

is introduced.

The stability will be investigated with the theory of

small perturbation waves. As perturbation the well known

expression C1ol for the stream function

,y - (y) e (58

is introduced, t denoting time, a - 21k with A denoting

the wave length. ,- r #iý is complex. The real part

is the natural frequency of the perturbation. The imagi-

nary part Aj determines damping (pico ) eo2 xitation

(i0). A.0 means stability. Then the complex propagation



velocity of the perturbance

C "4 (59

will be introduced. As mentioned before the number of per-

turbation waves around the circumference is

k - r (6o

Introducing the perturbation (58) into Navier-Stokes

equations one obtains [11] by linearization

r~ ~ ]U + 0j I.(~1)~ (-U + U
(,.ry)1.1 Y rY *jr7i)

(61

atiFYr-y (r-yf r-rT 7-

This expression contains the complete frictional terms.

An exact solution of eq.(61) will be deduced .

Introducing (56) one sees that the O-term on the left

hand side vanishes. Then introducing the operator f5l

LY) pý 1P, -...Z.... )jP) (62

one obtains

(U- r-Y' I r •' -YZ"L'" 1- :-"L63

Thus the fourth order equation (61) is reduced to the two

second order equations (62,63).

Introducing the dimensionless quantities

in (62,63) one obtains



j~tf (/~3(65

-0 (66

Substituting

,•"= /-•)/kR(•-I)(67

as new independent variable (66) is transformed to the

Bessel equationl.,

eL"÷ z L (z K-)L = 0 (68

with the solution

L - C,,•(1) + C, H,'(1) (69

(65) is transformed by (67) to

, , - 0L= (70

Adding (68,70) one obtains

e'( L -+e)'* Z ( L + $)'- K'(L - P) -0

with the solution

L e; 4 4 3 5* C5'



Thus tae complete solution of (61) is

= C 1 Z+ rC C, (,() -c,/-/(1) (71

with constants cl.C2 Pc3,c 4 .

The boundaries are y - 0, y - r or with (64,67)

Z12 ji K f- 1, Zj. 0 (72

The boundary donditions are

o, 0 (73

-k 1
As z° Hk1 are infinite at z 0 one has

c4 - c2 M 0

The boundary conditions at z1 yield the homogenous

equations

,= Z C, , ,,- = 0

Putting the determinant to zero one obtains

+g

This expression for the elgenvalues z1 can be transformed

with the differential formuLa for Bessel functions

7-Z;- 7 (75



to

,(1,z 0 (76

As the Bessel function J of first kind has only real roots
the elgenvalues z1 are real. This requires according to

(67)

I - 0 i (77

where i, ti are the real and imaginary parts of accor-

ding to (64). This means that a perturbation once origina-

ted can only rotate with the angular velocity of the ro-

tating fluid. 0i4 o means damping. Thus a flow representing

a rigid body rotation is stable. This confirms the former

result obtained by series expansion (a. TableIII). It

showed that the iarger the width of the gap the more the

stability region converges to Ir" 1.

The solution z 1 - 0 of (76) has to be excluded as

z - 0 represents the inner boundary according to (72).

The exact stability proof also can be given if a li-

quid annullus of the width d is rotating as a rigid body.

The boundary z1 is the same as in the preceeding case,

a. (72) but z 2 is now not zero. Therefore the constants

c4,o2 in (71) are now not zero.

The coordinate of the inner boundary Ic

d
Zj 0 (78

With

d
r-• a (79

one has

27 -. (Z, (80



o( is real.

Introducing (71) into the two boundary conditions (73)

for each boundary one obtains

eZ K + c. z, - c, -c, 4HkZ, 0
," "- #C ,( -C, 7,(,)-C1 H,'(it) 0

Cs ,x K1 , C.z."x e, '(z,) -c '

A) cH;Iezj) =0
C, KZ,"-'- C4 KZ ;- c, 7•e,Et -c2He•z2  0

The condition that the determinant must be zero yields if
the Wronski deterrainant

x,(z) H,(z) - 7• (z, HK(Z - X (81

is introduceu

, , - (•Z,)HK(Z•)-(Z)HiZ, K)]

+(Z," Z, .+ - " 'K'
A ( ,,)HK(,a)-Z,,.)H, (L,))+ ,(7Kz.4K(Ad) -(Z) H/l,(E,))]

By rearranging ore obtains

9-K1 Hý ' ( HK.,)
K(H;+ -y 'HZK,)) - 7, (4) (H,,K (Z,) - K,,H

I HK it

K, uKeZ,) "2 - £HK(2.)) - " I K9)

+ 4 12 7Kfi,) HK6!247 H, (Z2) (H2 tZ, H

SiK 0
T£ ,E Zj



With the differential formulas (75) and

A , K. (82

which hold for all kinds of Bessel functions this expres-

sion can be transformed to

+Z,'z [-H'K÷,€ ,(7 ',1 ('29.
zz2 f7Kcz(7-zj - f 7x(A) -H -1 ,A)(~; .7

8iK--- 0

Here again introducing (75,82) one obtains

+Z4¶7( .,( 2 7(- L + H_(Zd)7,/) 84

Expressing the Hankel function by J and the Neumann func-

tion N one has

z,tz[-,,(M 1 7 k., (,d - Na., (Z,) 7A-1 ('Z),
.z4 Z-N.K 2)a(i K N ZIr-, +(E'iSZ2)) = SKj~

Introducing (8o), multiplying the whole expression by a(

and differentiating with respect to eo one has

'C- (-I (W-"2 h,(~ -~4,,1Il~~,Zz)+'2(IV(.,(Z,) 7 ,A'. rLiL)7' I(A

+ aK-V 1) M( Ad 7iK( -1(zd tNK./ad7 Z (M;4, I (V 7K -I (ZE *iW 1---Ed 7*r -` t)]

=0



By rearranging and introducing (75,82) o:ie obtains

(I)- #H7  At) .7,gal 2{[aNKo I U + O(KNK..i(Z,) 0

As z2 # 0 one has the condition

NjZ7K# (.I)7- A (1--i(= N2K (82

A.; e( is real this condition means that the ratios of the

real and the imaginary parts of the nominator and denomi-

nator must be equal. This is not possible as the nomina-

tor and the denominator are of different degree in the

lowest power of z. Therefore the condition only can be satisfil

with a real independent variable z. This again means sta-

bility. It can be seen easily that (83) reduces to i76) if

*( tends to zero. Then the JK terms vanish and NK(z 2 )

can be cancelled. What is left is (76).



12.) Summary

The preceeding report No. 1 of June 1961 was devoted

to the question how turbulence may be generated in a

Couette flow between excentric cylinders when the outer

one is rotating and the inner cylinder is at rest.

This question arose when recent experiments performed

by the author had shown definitely stability up to considerable

speeds of revolution (51 whilst the earlier experiment3

[1.2,34,3 clearly had shown transition. As in the new
experiments excentricities and vibrations were avoided

as far as possible in the former experiments disregar-

ded excentricities and vibrations could have affected

the transition to turbulence. In fact a review of the

earlier experimental work does not exclude this conjec-

ture. It therefore seemed worthwhile to investigate the

generation of turbulence by excentricities and vibra-

tions. Turbulence would occur here as consequence of se-

paration. As separation is coupled with inertia forces

independent of the means by which they are produced it

is sufficient to consider excentricity. Restricting to

small excentricities with regard to the width of the

gap the outer boundary which is regarded as excentric can

b* replaced by a fictitious centric boundary representing the

m~an of the actual boundary. The rotating outer cylinder

produces radial velocities at the fictitious boundary.

Therefore nonhomogenous boundary conditions exist ex-

cluding an eigenalue problem and necessitating the cal-

culation of the velocity profiles. Doing this it was

found that separation can occur.

However the calculated Reynolds numbers for separation

are too small compared with expertmental observations.

The discrepancy showed to be too large as to be explained

by the earlier occuring instability at the inflection

point of the velocity profile. The insufficiency of a
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linear approximation seemed to be more likely. In fact

the mean velocity tends to zero at the inner boundary

so that linearization here is not anymore Justified. Ob-

viously linearization implies to large inertia forces.

Therefore in this report a new calculation was performed

with inertia forces which should be smaller than the ac-

tual inertia forces. This was done by neglecting the

inertia forces in the inner half of the annullus and

linearizing the inertia fctms in the outer half. Now

a satisfactory agreement with experiments was obtained.

It may be mentioned that linearized boundary calcu-

lations along corrugated walls had shown a sensitive

influence of the corrugation on transition [7) in

agreement with the result obtained here that the calcu-

lated Reynolds number for separation is too small. Now

as a comparison with experiments is available this sen-

sitiveness shows to be more attributed to the insuffi-

cient linearization than to physical effects.

Having demonstrated the generation of tuebulence by

an excentricity and herewith as mentioned before also

by vibrations a straight forward proof of the stability

of the Couette flow with rotating outer cylinder on the

basis of propagating perturbation waves is still of in-

terest. The exact solution could be derived [51 . How-

ever the eigenfunctions are Bessel functions of complex

order which are not yet enough explored. Thus a series

expansion had to be introduced which was recalculated

in this report. It shows at least stability regions.

However in a special case an exact stability proof can

be given. It is the rotation of a fluid as rigid body.

This is also the limiting case of the centric Couette

flow regarded here with vanishing radius of the inner

cylinder. The eigenfurtions are Bessel functions of
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first kind the zeros of which are the eigenvalues. As

they are real the perturbation waves are damped and ro-
tate with the body. Damping means stability. The exact

stability proof is also given for a liquid annullus ro-

tating as a rigid body. Also in this case the eigenva-

lues turn out to be real so that stability exists.
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